Nonmuscle myosin II powered transport of newly formed collagen fibrils at the plasma membrane.

نویسندگان

  • Nicholas S Kalson
  • Tobias Starborg
  • Yinhui Lu
  • Aleksandr Mironov
  • Sally M Humphries
  • David F Holmes
  • Karl E Kadler
چکیده

Collagen fibrils can exceed thousands of microns in length and are therefore the longest, largest, and most size-pleomorphic protein polymers in vertebrates; thus, knowing how cells transport collagen fibrils is essential for a more complete understanding of protein transport and its role in tissue morphogenesis. Here, we identified newly formed collagen fibrils being transported at the surface of embryonic tendon cells in vivo by using serial block face-scanning electron microscopy of the cell-matrix interface. Newly formed fibrils ranged in length from ~1 to ~30 µm. The shortest (1-10 µm) occurred in intracellular fibricarriers; the longest (~30 µm) occurred in plasma membrane fibripositors. Fibrils and fibripositors were reduced in numbers when collagen secretion was blocked. ImmunoEM showed the absence of lysosomal-associated membrane protein 2 on fibricarriers and fibripositors and there was no effect of leupeptin on fibricarrier or fibripositor number and size, suggesting that fibricarriers and fibripositors are not part of a fibril degradation pathway. Blebbistatin decreased fibricarrier number and increased fibripositor length; thus, nonmuscle myosin II (NMII) powers the transport of these compartments. Inhibition of dynamin-dependent endocytosis with dynasore blocked fibricarrier formation and caused accumulation of fibrils in fibripositors. Data from fluid-phase HRP electron tomography showed that fibricarriers could originate at the plasma membrane. We propose that NMII-powered transport of newly formed collagen fibrils at the plasma membrane is fundamental to the development of collagen fibril-rich tissues. A NMII-dependent cell-force model is presented as the basis for the creation and dynamics of fibripositor structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of LARP6 and Nonmuscle Myosin in Partitioning of Collagen mRNAs to the ER Membrane

Type I collagen is extracellular matrix protein composed of two α1(I) and one α2(I) polypeptides that fold into triple helix. Collagen polypeptides are translated in coordination to synchronize the rate of triple helix folding to the rate of posttranslational modifications of individual polypeptides. This is especially important in conditions of high collagen production, like fibrosis. It has b...

متن کامل

Myosin II is associated with Golgi membranes: identification of p200 as nonmuscle myosin II on Golgi-derived vesicles.

A variety of peripheral membrane proteins associate dynamically with Golgi membranes during the budding and trafficking of transport vesicles in eukaryotic cells. A monoclonal antibody (AD7) raised against Golgi membranes recognizes a peripheral membrane protein, p200, which associates with vesicles budding off the trans-Golgi network (TGN). Based on preliminary findings, a potential associatio...

متن کامل

Collagen turnover in regenerating barbels of a catfish.

In regenerating barbels of Heteropneustes fossilis, membrane-enclosed collagen fibrils, some within lysosomes, are found in fibroblasts, in old connective tissue at the wound site and also in the fibroblasts of the newly-formed core of the regenerate. The implication is that tissue remodelling can involve fibroblasts in phagocytosis of recently formed collagen fibrils. Cytological evidence sugg...

متن کامل

Myosin II Is Involved in the Production of Constitutive Transport Vesicles from the TGN

The participation of nonmuscle myosins in the transport of organelles and vesicular carriers along actin filaments has been documented. In contrast, there is no evidence for the involvement of myosins in the production of vesicles involved in membrane traffic. Here we show that the putative TGN coat protein p200 (Narula, N., I. McMorrow, G. Plopper, J. Doherty, K.S. Matlin, B. Burke, and J.L. S...

متن کامل

Dual role for myosin II in GLUT4-mediated glucose uptake in 3T3-L1 adipocytes.

Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specific...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 49  شماره 

صفحات  -

تاریخ انتشار 2013